Monatshefte für Chemie 118, 349-354 (1987)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1987

Kristallstruktur von Trisilber(I)amidosulfat-3-Ammoniak-2-Wasser, Ag₃SO₃N · 3 NH₃ · 2 H₂O

Ferdinand Belaj^{a, b, *}, Christoph Kratky^a, Edgar Nachbaur^c und Alois Popitsch^c

 ^a Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Österreich
^b Derzeitige Adresse: Institut für Mineralogie und Kristallographie, Universität Wien, A-1010 Wien, Österreich
^c Institut für Anorganische Chemie, Universität Graz, A-8010 Graz, Österreich

(Eingegangen 24. Februar 1986. Angenommen 1. März 1986)

Crystal Structure of Trisilver(I) Amidosulfate-3-Ammonia-2-Water, $Ag_3SO_3N \cdot 3 NH_3 \cdot 2 H_2O$

An X-ray crystal structure analysis of colourless Ag₃SO₃N · 3 NH₃ · 2 H₂O was carried out at room temperature: M = 504.79, orthorhombic, P2₁2₁2₁, a = 6.275 (1) Å, b = 11.826 (2) Å, c = 14.299 (12) Å, V = 1061.10 Å³, Z = 4, $d_x = 3.160$ Mgm⁻³, F(000) = 940, Mo K_a, $\lambda = 0.71069$ Å (graphite monochromator), $\mu = 5.60$ mm⁻¹, R = 4.71%, $R_w = 4.96\%$ (982 reflections, 120 parameters). The structure consists of Ag ribbons; each Ag atom is linearly co-ordinated to two N atoms with distances corresponding to covalent Ag—N bonds; no Ag—O co-ordination is observed; the N atom of the SO₃N group is surrounded by three Ag atoms; compared to amidosulfuric acid, the SO₃N group shows significant deformation.

(Keywords: Crystal structure; Colour of Ag(I) compounds; Amidosulfates; Trisilver(I) amidosulfate-3-ammonia-2-water)

Einleitung

Nach der Strukturbestimmung von $AgSO_3NH_2$ [1, 2] wurde in der vorliegenden Arbeit die Kristallstruktur von $Ag_3SO_3N \cdot 3 NH_3 \cdot 2 H_2O$ bestimmt, um weitere Informationen über die Zusammenhänge zwischen Struktur und Farbe von Ag(I)-Verbindungen [2, 3] zu bekommen. Im Gegensatz zum gelben $Ag_3SO_3N \cdot H_2O$ [2, 4] sind die Kristalle von $Ag_3SO_3N \cdot 3 NH_3 \cdot 2 H_2O$ farblos.

Kristalle der Titelverbindung wurden 1936 erstmals dargestellt [5] und sind nach dem Pulverspektrum isotyp mit $Ag_3SeO_3N \cdot 3NH_3 \cdot 2H_2O$ [6]. Eine Bruttoformel $Ag_3SO_3N \cdot 3NH_3 \cdot 3H_2O$ [7] wird durch die vorliegende Strukturanalyse widerlegt. Anhand des IR-Spektrums [8] wurden verschiedene Möglichkeiten für diese, nach der nun durchgeführten Kristallstrukturanalyse sehr ungewöhnliche, Kristallstruktur diskutiert.

Experimenteller Teil

Die farblosen Kristalle wurden nach *Chaumeton* [5] durch Zusammenfügen von 120 ml 10% AgNO₃-Lösung, 20 ml 1*N*-NH₂SO₃H-Lösung und 2.4 g NaOH, gelöst in 24 ml 15% NH₃-Lösung in der angegebenen Reihenfolge dargestellt und anhand des IR-Spektrums [8] identifiziert. Läßt man die Lösung offen einige Tage stehen, so scheiden sich an der Oberfläche orangerote (!) Kristalle von Ag₂CO₃ ab. Eine Strukturbestimmung derselben [2] zeigte keine signifikanten Unterschiede zur Struktur der üblicherweise erhaltenen hellgelben Ag₂CO₃-Kristalle [9].

Da sich die farblosen Kristalle von $Ag_3SO_3N \cdot 3NH_3 \cdot 2H_2O$ an der Luft zersetzen, wurden die röntgenographischen Untersuchungen an einem Kristall $(0.07 \times 0.10 \times 0.15 \text{ mm}^3)$ durchgeführt, der in einem Glasröhrchen (Innendurchmesser 0.3 mm, Wandstärke 0.01 mm) mit etwas Mutterlauge eingeschlossen war. Die Struktur wurde bei Raumtemperatur wie folgt bestimmt: Modifiziertes Stoe 4-Kreis Diffraktometer; Zellkonstanten durch "least-squares"-Anpassung an die Diffraktometerwinkel von 33 Reflexen; Datensammlung für alle Reflexe eines mit $2\theta \leq 60^{\circ}$ $(\sin \theta/\lambda \leq 0.704 \text{ Å}^{-1}; -8 \leq h \leq 0, 0 \leq k \leq 16,$ Oktanten $0 \le l \le 20$; ω - θ -Scans, Scanbreite 1.2°; "background—integrated peak—background"-Methode; Raumgruppe P2₁2₁2₁ aus systematischen Extinktionen; 1878 beobachtete, 1798 unabhängige, 995 signifikante Reflexe mit $|F_0| > 5 \sigma(F_0)$; LP-Korrektur und numerische Absorptionskorrektur [10]. Lösung der Struktur mit direkten Methoden und Differenz-Fouriersynthesen; Protonenpositionen konnten nicht zweifelsfrei ermittelt werden. Ausschluß von 13 Reflexen von den letzten Verfeinerungszyklen wegen vermutetem Extinktionseinfluß, empirische isotrope Extinktionskorrektur [10] $F' = F(1 - 1.34 \cdot 10^{-7} F^2 \sin \theta)$. Nach dem letzten Verfeinerungszyklus (alle Atome mit anisotropem Temperaturfaktor; max. Änderung/ESD 0.15) zeigte eine Differenz-Fouriersynthese Maxima bis zu $1.47 \,\mathrm{e}\mathrm{\AA}^{-3^{\prime}}$ 1.47 eÅ^{-3'} in der Umgebung der Ag-Atome. Gewichtssystem $w = 1/[\sigma^2(F) + 9.16 \cdot 10^{-4} F^2]; R = 4.71\%, R_w = 4.96\%; 982$ Observable, 120 Parameter: verwendete Rechenprogramme in Lit. [10, 11].

Ergebnisse und Diskussion

Die Atomparameter sind in Tabelle 1 zusammengefaßt, Abb. 1 zeigt ein stereoskopisches Packungsbild und Abb. 2 eine schematische Darstellung der Bindungsabstände und -winkel.

Die Ag-Atome bilden Bänder, bestehend aus drei zur x-Achse ungefähr parallel verlaufenden, gestreckten (Ag-Ag-Ag-Winkel

Tabelle 1. Relative Atomkoordinaten und Librationstensorkomponenten (× 10⁴, U-Werte in Å²) der anisotrop verfeinerten Atome. Der anisotrope Temperaturfaktor hat die Form $T = \exp[-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12} + ...)]$

	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
AGI	4527(3)	2481(2)	15(2)	274(8)	316(7)	203(6)	-9(6)	-46(8)	-18(8)
AG2	7267(3)	596(1)	1158(1)	280(9)	280(7)	298(8)	-10(6)	3(9)	-29(8)
AG3	2262(4)	366(1)	976(1)	364(12)	482(11)	410(10)	-44(7)	16(10)	-36(10)
S1	2088(9)	1874(4)	-1861(3)	223(25)	294(23)	189(21)	-42(18)	16(23)	7(25)
01	4281(26)	1697(16)	-2171(12)	302(96)	678(123)	316(86)	-226(90)	48(80)	18(97)
02	862(28)	2406(15)	-2624(10)	475(116)	369(84)	326(84)	-40(72)	-67(81)	117(97)
03	1132(32)	741(11)	-1634(12)	705(125)	83(65)	523(100)	37(64)	88(99)	-115(85)
N1	2055(25)	2661(13)	-965(10)	120(73)	312(82)	196(69)	95(60)	-82(66)	-44(73)
N2	7539(35)	-1180(12)	1339(11)	477(128)	185(76)	312(86)	64(61)	94(103)	103(95)
N3	2410(48)	-819(17)	-179(12)	779(170)	531(118)	274(93)	102(80)	-53(119)	-290(156)
N4	2099(35)	1176(14)	2290(12)	338(110)	362(94)	304(88)	36(71)	-24(97)	23(100)
04	7112(37)	-1849(13)	-758(11)	906(152)	418(82)	338(84)	136(68)	302(115)	46(122)
05	2041(38)	4602(14)	1130(14)	620(142)	530(113)	856(144)	82(99)	-132(133)	-192(110)

Abb. 1. Stereoskopisches Packungsbild der Kristallstruktur von Ag₃SO₃N· \cdot 3 NH₃·2 H₂O (*b* nach rechts, *c* nach oben)

Abb. 2. Schematische Darstellung der Bindungsabstände und -winkel in $Ag_3SO_3N \cdot 3NH_3 \cdot 2H_2O$. Die Standardabweichungen betragen 0.015 Å bzw. 1°, falls nicht anders angegeben

> 166°) Ag-Ketten, sodaß die Ag-Atome des Mittelstranges (Ag1) hexagonal planare Ag-Koordination bekommen. Alle Ag-Atome sind mit stark kovalenten Bindungsanteilen (Ag—N-Abstände 2.08 bis 2.17 Å) ungefähr linear (alle N—Ag—N-Winkel > 166°) zu je zwei N-Atomen gebunden: Alternierend über bzw. unter den Mittelpunkten der ungefähr gleichseitigen Ag-Dreiecke (Ag1, Ag2, Ag1) befindet sich das zur SO₃N-Gruppe gehörende N-Atom N1. Besitzt dadurch Ag1 bereits seine beiden N-Koordinationspartner, so werden der zweite von Ag2 bzw. beide von

	S-N	S-0	0-S-N	0-8-0	LIT.
H ₃ NSO ₃	1,7714(3)	1,4389(3) 1,4440(3) 1,4440(3)	101,68(2) 102,84(2) 102,86(2)	115,98(2) 115,73(2) 114,72(2)	13
AgSO ₃ NH ₂	1,674(8)	1,443(8) 1,456(8) 1,459(8)	104,1(5) 104,3(5) 108,4(5)	115,7(5) 112,0(5) 111,6(5)	1,2
AG ₃ SO ₃ N∙H ₂ O	1,584(18)	1,461(18) 1,470(18) 1,487(18)	106,8(10) 108,1(10) 109,8(10)	112,6(10) 110,6(10) 108,7(10)	2,4
Ag ₃ SO ₃ N·H ₂ O	1,589(18)	1,467(18) 1,486(18) 1,487(18)	105,5(10) 109,9(10) 110,1(10)	112,5(10) 110,0(10) 108,7(10)	2,4
AG ₃ SO ₃ N∙3NH ₃ ∙2H ₂ O	1,584(15)	1,460(15) 1,477(15) 1,503(15)	109,9(10) 110,0(10) 110,1(10)	110,1(10) 109,4(10) 108,3(10)	

Tabelle 2. Bindungsabstände und -winkel der SO₃N-Gruppe in der Amidoschwefelsäure und in den Silber(1)amidosulfaten. In Ag₃SO₃N·H₂O befinden sich zwei Moleküle in der asymmetrischen Einheit

Ag3 von NH₃-Stickstoffatomen gebildet. Erwartungsgemäß sind die beiden H₂O-Moleküle nicht an Ag koordiniert [kürzester Ag—O-Abstand 3.28 (2) Å], sondern bilden Wasserstoffbrücken zu den O-Atomen der SO₃N-Gruppen aus (siehe Abb. 2), es ist jedoch sehr überraschend, daß keine Ag⁺-Ionen an die O-Atome der SO₃N-Gruppe koordiniert sind [kürzester Ag—O-Abstand 3.26 (2) Å], was allgemein erwartet wurde [5, 7, 8].

Ag₃SO₃N · 3 NH₃ · 2 H₂O ist die erste Ag(I)-Verbindungen, die trotz einer Koordination von 3 Ag⁺-Ionen an ein Donoratom farblos ist [3]. Die Verbindung nimmt eine Mittelstellung ein zwischen dem farblosen AgSO₃NH₂ [1, 2] [4 ionische Ag—O-Abstände \geq 2.409 (8) Å, ein ionischer Ag—N-Abstand von 2.312 (8) Å; kürzester Ag—Ag-Abstand 3.905 (2) Å] und dem gelben Ag₃SO₃N · H₂O [2, 4] [alle Ag—N-Bindungen kovalent mit Abständen unter 2.23 Å; Ag-Ebenen, in denen alle Ag— Ag-Abstände \leq 2.882 (2) Å sind]. Offenbar sind, wie auch systematische Untersuchungen der bekannten Kristallstrukturen von Ag(I)-Verbindungen zeigten [2, 3], für das Auftreten von Farbe neben kovalenten Ag-X-Bindungen auch Ag—Ag-Kontaktabstände unter 3.1 Å erforderlich.

Die SO₃N-Gruppe hat sich durch den Ersatz der Protonen durch Ag⁺-Ionen drastisch verändert (siehe Tabelle 2): Liegt die Amidoschwefelsäure im Kristall als Zwitterion ${}^{-}O_3S$ — ${}^{+}H_3$ vor [13], so trägt der Stickstoff der SO₃N-Gruppe in Ag₃SO₃N · 3 NH₃ · 2 H₂O formal eine negative Ladung. In Übereinstimmung mit den IR-spektroskopischen Daten [8] nähert sich dadurch die Geometrie der SO₃N-Gruppe jener eines Tetraeders. Ist in den Trisilberamidosulfaten der S—N-Abstand noch signifikant größer als der S—O-Abstand, so sind die Se—N- und Se—O-Abstände in α -Ag₃SeO₃N [12] durch die größere Polarisierbarkeit des Selens innerhalb der Genauigkeit der Strukturbestimmung gleich groß. Zwischen den SN-, SO-, OSN- und OSO-Größen bestehen lineare Korrelationen mit Korrelationskoeffizienten |k| > 0.96, sodaß die Geometrie der SO₃N-Gruppe durch einen Parameter beschrieben werden kann [2].

Die Positionen der 13 Protonen konnten nicht bestimmt werden. Unter 3.3 Å finden sich jedoch 4 kurze O····O- und 8 etwas längere N···O-Kontaktabstände (siehe Abb. 2), die vermutlich alle auf Wasserstoffbrücken zurückgehen und für die beiden Wassermoleküle (O4, O5) starke Wasserstoffbrückenbindungen erwarten lassen.

Dank

F. B. dankt Herrn Prof. Dr. J. Schurz, Institut für Physikalische Chemie der Universität Graz, für die großzügige Förderung dieser Arbeit.

Literatur

- [1] Belaj F, Kratky Ch, Nachbaur E, Popitsch A (1987) Monatsh Chem 118: 19
- [2] Kemmer F (1985) Dissertation Univ Graz
- [3] Kratky Ch, Nachbaur E, Popitsch A (1981) Monatsh Chem 112: 529
- [4] Belaj F, Kratky Ch, Nachbaur E, Popitsch A Monatsh Chem (im Druck)
- [5] Chaumeton L (1936) Compt Rend Hebd Séances Acad Sci 202: 1783
- [6] a) Dostál K, Růžička A (1962) Z Chem 2: 88. b) Dostál K, Růžička A (1965) Z Anorg Allg Chem 337: 325
- [7] Lecuir L (1941) Ann Chim (Paris) 15: 33
- [8] Paetzold R, Dostál K, Růžička A (1966) Z Anorg Allg Chem 348: 1
- [9] a) Masse R, Guitel JC, Durif A (1979) Acta Cryst B35: 1428. b) Masse R, Guitel JC, Durif A (1979) Acta Cryst B35: 2823
- [10] Sheldrick GM (1976) SHELX76, a computer program for crystal structure determination. Univ of Cambridge, England
- [11] a) Germain G, Main P, Woolfson MM (1970) Acta Cryst B26: 274. b) Stewart JM (1976) The XRAY system. Tech Rep TR-446. Computer Science Center, Univ of Maryland, USA. c) Motherwell S (1976) PLUTO, a program for plotting molecular and crystal structures. Cambridge Crystallographic Data Centre, England
- [12] Fawcett JK, Kocman V, Nyburg SC, O'Brien RJ (1969) J Chem Soc, Chem Commun 1969: 1198
- [13] Bats JW, Coppens P, Koetzle TF (1977) Acta Cryst B33: 37